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Abstract
The rate at which forest vegetation re-establishes dominance after clearcut harvesting can impact many ecological processes, such as erosion/

sedimentation, nutrient and water cycling, carbon storage potential, wildlife habitat, and trophic interactions. Although knowing a forest stand’s

current state of succession is useful, a clearer understanding of the impact forest harvesting has on the aforementioned ecological processes can be

achieved with a more dynamic characterization of the successional process. To more fully model the continuous nature of forest regrowth following

clearcut harvesting we extrapolated percent tree cover data collected by the U.S. Forest Service Pacific Northwest Forest Inventory and Analysis

program to a cross-normalized Landsat time-series using a date-invariant regression modeling approach. Using three periods of mapped clearcuts

we extracted and classified the extrapolated percent tree cover data into four regrowth classes (little to no, slow, moderate and fast). These forest

regrowth classes were used to develop frequency distributions describing the landscape patterns of postharvest forest recovery for two ecological

provinces in western Oregon. The patterns of forest regrowth observed over the three clearcut periods indicated a much higher percentage of fast

regrowth in the Coastal Range Province and a much higher percentage of little to no regrowth in the Western Cascade Province. For both ecological

provinces we observed the propensity for faster regrowth on north facing aspects, shallow slopes and at low elevations. The forest regrowth classes

and the frequency distributions indicated that a wide range of successional stages could be found in both ecological provinces 18 years after

clearcutting. The extension of forest regrowth trajectories to the spectral space of Landsat provided an opportunity to use CART statistical analysis

to more fully investigate the climatic and topographic drivers influencing the rate of postharvest forest regrowth. Based on the Kappa statistic,

predictions from both CART models were in ‘‘fair’’ to ‘‘moderate’’ agreement with the test samples. Both classification trees yielded ecologically

interpretable insights into the environmental attributes influencing forest regrowth rates after clearcutting. In both ecological provinces, elevation

followed by potential relative radiation (PRR) explained the largest amount of variation in forest regrowth rates. To gauge the effectiveness of

predicting more generalized postharvest forest regrowth rates we combined the four forest regrowth classes into two general ‘‘fast’’ and ‘‘slow’’

categories. Based on the Tau statistic, the CART models correctly classified 12% (CRP) and 26% (WCP) more combined test samples than

classification of the four regrowth classes.

Published by Elsevier B.V.
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1. Introduction

There is growing evidence suggesting considerable varia-

bility in the rate at which trees re-establish dominance

following stand-replacing harvest disturbance in the temperate

forests of the Pacific Northwest. This variability in forest

regrowth has been observed even among stands with similar
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abiotic conditions and management prescriptions (Nesje, 1996;

Tappeiner et al., 1997; Sabol et al., 2002; Yang et al., 2005;

O’Connell et al., 2007). Re-establishment of forest vegetation

after harvest is important because it can influence many

ecological processes, such as erosion/sedimentation, nutrient

and water cycling, carbon storage potential, wildlife habitat,

trophic interactions, and because of the economic value of

conifer trees in the region.

Variability in the timing of tree re-establishment is one of

the most widely studied phenomenons in forest ecology

(Franklin et al., 2002). In western Oregon, ground surveys
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(e.g., Tappeiner et al., 1997) and interpretation of high-

resolution aerial photographs (Nesje, 1996; Yang et al., 2005)

have been previously utilized to study tree re-establishment,

both of which are time consuming and expensive. Ground

surveys are critical in understanding the role of local site

factors controlling tree re-establishment, however the number

of stands analyzed is often fewer than required to statistically

validate relationships between the abiotic and biotic factors

influencing forest regrowth. Studies based on the interpretation

of high-resolution aerial photographs are useful in that they

help establish the spatial and temporal extent over which

regrowth variability is occurring, but they do not readily permit

explicit spatial modeling of the phenomenon (Nesje, 1996;

Yang et al., 2005). We seek to overcome these limitations by

scaling estimates derived by ground survey and airphoto

interpretation to the greater landscape using Landsat data. This

synergistic approach should effectively increase the number of

stands available for statistical modeling, thus offering an

opportunity to advance our understanding of the geographi-

cally referenced environmental attributes influencing rates of

forest regrowth following clearcutting in western Oregon.

The use of satellite imagery to characterize forest succes-

sional processes has mainly focused on estimating forest age

from single image dates to make inferences about successional

stage condition at one point in time (Fiorella and Ripple, 1993;

Peterson and Nilson, 1993; Jakubauskas, 1996; Cohen et al.,

2001; Song et al., 2007). The difficulty with this approach is that

the relationship between forest age and spectral data can be

highly variable, especially for young (<20 year) stands with low

canopy cover (Horler and Ahern, 1986). A more limited number

of studies have taken advantage of multiple images to study the

dynamic process of forest succession (Hall et al., 1991; Foody

et al., 1996; Lucas et al., 2002), but have utilized relatively simple

techniques such as post-classification comparison to estimate

forest change. Although simple to execute, post-classification

comparison relies on differencing two or more independently

produced image classifications. Thus, its effectiveness at

estimating forest change is hindered by the fact that errors

inherent to each individual classification combine multiplica-

tively as they are overlaid for comparison, resulting in a final

change product that contains more error than any of the original

classification-based inputs.

An alternative use of satellite imagery for characterizing

forest successional processes is through the examination of a

multi-temporal image series. A multi-image time-series

constructed from the Landsat suite of optical sensors could

(at present) theoretically consist of 35 images (1972–2006) per

scene, which could be used in a continuous fashion to create

‘‘regrowth trajectories’’ for any forested stand disturbed since

1972. Although in some areas geographic and climatic factors

may limit the availability of suitable images required to create

useful trajectories of forest regrowth, it is likely the number of

images needed to sufficiently capture the landscape distur-

bance/recovery signal will be fewer than conceptualized in this

theoretical example. As forest stands in the Pacific Northwest

commonly enter the stem exclusion phase (i.e., closed canopy

condition) of successional development within the first 20 years
after clearcutting (Franklin et al., 2002) we base our analysis of

postharvest early forest successional patterns on 16 Landsat

TM and 3 Landsat ETM+ images covering 18 years. This rapid

rate of tree regrowth after disturbance eliminates the need to

lengthen the time span of our image series back to Landsat’s

Multi-Spectral Scanner (MSS) system. In addition, the

improved 30 m resolution of the post-MSS images better

matches the resolution of our ground referenced tree cover data.

We define ‘‘trajectory’’ as a series of states through which a

system proceeds over time. Trajectories (or change-curves) are

comprised of a series of mathematical or statistical models fit to

repeatedly measured observations, which are used to char-

acterize or quantify various pathways of vegetation response to

disturbance. The shape of vegetation regrowth trajectories has

long been recognized by field ecologists as a practical means of

describing plant community responses to various disturbance

types (Armesto and Pickett, 1986; Halpern and Franklin, 1990;

del Moral and Bliss, 1993), as differences in trajectory shape

infer differences in the controlling mechanisms of vegetation

change. Additionally, the trajectory concept forms the basis of

many empirical functions commonly used by foresters to

predict theoretical plant growth (Richards, 1959) and stand-

level growth based on site-index (Heger, 1968).

Although the use of repeated observations collected by

satellite remote sensing platforms such as Landsat seem

particularly well suited to analyzing continuous trends in

vegetation via trajectory analysis, only a few examples can be

found in the literature (Viedma et al., 1997; Joyce and Olsson,

1999). One example is presented by Lawrence and Ripple

(1999) who derive vegetation change trajectories with estimates

of percent green vegetation cover predicted independently from

8 Landsat TM images (covering 15 years). These change

trajectories were used to describe and quantify various regrowth

pathways following the 1980 volcanic eruption of Mt. St.

Helens in southwestern Washington.

Ultimately the success of the trajectory approach in capturing

real vegetation change hinges on the successful radiometric

calibration of the multi-temporal image series. Given this

importance, we favor the use of a radiometric calibration method,

which was specifically designed to operationally minimize

residual scatter (i.e., lower RMSE) in early forest regrowth

trajectories in western Oregon. The method, referred to as

‘‘absolute-normalization’’ (Schroeder et al., 2006), uses statis-

tically selected pseudo-invariant features (see Canty et al., 2004)

to relatively normalize an image time-series to an atmo-

spherically corrected reference image (corrected with 6S,

Vermote et al., 1997). All images in the multi-temporal Landsat

series presented here were normalized to a common radiometric

scale (across all images <0.025 RMSE), while simultaneously

correcting for atmospheric and sun/sensor view-angle effects.

Once the images comprising a multi-temporal image series

share a common radiometric scale, meaningful regrowth

trajectories can be constructed directly from spectral reflec-

tance values, from fraction images derived via spectral mixture

analysis (Smith et al., 1990) (e.g., green vegetation, non-

photosynthetic vegetation, soil and shade images) or with

biophysical estimates predicted from reflectance (e.g., percent
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tree cover). In this paper we base our forest regrowth

trajectories on a date-invariant relationship developed between

Landsat spectral data and ground measured tree cover data

collected by the U.S. Forest Service Pacific Northwest (PNW)

Forest Inventory and Analysis (FIA) program. Although date-

invariant regression can be thought of as a form of post-

classification comparison, the use of a detailed radiometric

calibration procedure, continuous versus class based estimates

and derivation of change information from multiple image

trajectories improves on the traditional application of the

method. For more details on the date-invariant regression

approach, referred to as ‘‘state model differencing’’ see Healey

et al. (2006).

We aim to address the following three objectives: first, we

seek to corroborate the existence of divergent forest regrowth

pathways among harvested stands previously identified in

western Oregon via airphoto interpretation (Nesje, 1996; Yang

et al., 2005). Second, we compare landscape scale early

successional forest regrowth patterns between the two primary

forested provinces in the study area (i.e., the moist, warm Coast

Range Province and the drier and colder Western Cascade

Province). Finally, we use commonly available physical proxies

(e.g., aspect, slope, elevation) and plant relevant (e.g., potential

relative radiation, temperature, precipitation) explanatory

variables to predict early successional forest regrowth patterns

in both provinces.

2. Methods

2.1. Study area

The study area is comprised of Landsat WRS-2 path 46 row

29, which covers approximately 185 km2 of western Oregon

(Fig. 1). The two main forested provinces in the study area are
Fig. 1. Landsat WRS-2, path 46 row 29 study area showing Coast Range (CRP)
described by Franklin and Dyrness (1988) as the Coast Range

Province (CRP) and the Western Cascade Province (WCP). The

CRP is characterized in the far west by a Sitka spruce zone a

few kilometers wide lying directly adjacent to the Oregon coast.

The rest of the CRP and the majority of the WCP are dominated

by conifers common to the Douglas-fir/western hemlock zone,

although hardwood species such as red alder, vine maple, big

leaf maple and Pacific dogwood can dominate moist riparian

areas and dry valley margins.

In Douglas-fir forests two principal seral groups typically

comprise post-disturbance vegetation communities, residuals

(members of the original forest community) and invaders (non-

forest species that colonize after the disturbance event)

(Halpern and Franklin, 1990). Halpern (1989, Table 1)

describes six forest understory communities common to

Douglas-fir forests. In addition to conifer trees, early seral

communities in this region can often be dominated by several

grass, herb, shrub (e.g., ceanothus, oceanspray, salal, vine

maple, Oregon grape, hazel and sword fern) and non-conifer

tree species (bitter cherry, Pacific madrone, and chinkapin).

The extent to which of these life forms dominates after

disturbance is likely a function of disturbance intensity, initial

seed abundance, site condition, stochastic processes (e.g.,

climate, seed dispersal), and forest management activities.

Regardless of life form dominance, a complex mixture of

several species is likely to occur until canopy closure is fully

achieved.

Overall, the climate of the Pacific Northwest is typified by

warm, dry summers and mild, wet winters. The study area

encompasses a wide range of elevations, yielding strong

physical and climatic gradients. Based on annual averages, the

CRP typically receives more precipitation (3000 mm versus

2300 mm) and is warmer in the winter (5 8C versus�5 8C) and

cooler in the summer (16 8C versus 23 8C) than the WCP. These
and Western Cascade (WCP) ecological provinces in western Oregon, USA.
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climatic differences, in concert with differences in elevation

(CRP: 450–750 m versus WCP: 450–3000 m) and geologic

parent materials yield a wide array of growing conditions. The

study area also includes a diverse distribution of existing land

ownership categories (Cohen et al., 2002), and therefore

represents the disturbance and recovery patterns present in the

region.

2.2. Data

2.2.1. Multi-temporal image series

Our characterization of forest regrowth patterns in western

Oregon focuses on the analysis of a multi-temporal image series

consisting of 19 summer (e.g., July–September), near

anniversary Landsat TM and ETM+ images (WRS-2, path

46 row 29) (Table 1). A detailed description of the image

selection criteria, as well as the geometric and radiometric

corrections applied to the multi-temporal image series can be

found in Schroeder et al. (2006). In all, the images comprising

the multi-temporal image series were atmospherically cor-

rected and normalized to within 0.025 RMSE of the selected

reference image (1994) using the absolute-normalization

approach detailed above. For this study the 2005 image was

added to the multi-temporal image series using the same

geometric and radiometric processing protocols described in

Schroeder et al. (2006).

2.2.2. Tree cover

Three independently collected (one ground based, two

photo-interpretation based) tree cover (measured as percent)

data sets were utilized in this study. The ground measured tree

cover data set was recorded by line transect method (see pages

155–162, USDA Forest Service, 1995) during the 1995 periodic

forest inventory of western Oregon conducted by the U.S.

Forest Service PNW-FIA program. The 2.1 ha FIA plots are

coded from 1 to 5 based on the number of different land cover
Table 1

Landsat WRS-2, path 46 row 29 multi-temporal image series

Sensor Date

TM 26 August 1986

TM 12 July 1987

TM 31 August 1988

TM 3 September 1989

TM 7 July 1991

TM 10 August 1992

TM 29 August 1993

TM 31 July 1994

TM 19 August 1995

TM 21 August 1996

TM 23 July 1997

TM 11 August 1998

TM 16 August 2000

TM 25 August 2003

TM 26 July 2004

TM 29 July 2005

ETM+ 22 August 1999

ETM+ 26 July 2001

ETM+ 29 July 2002
conditions (e.g., forest, water, non-forest) observed on each of

the five measured subplots. Thus, a plot labeled 1 (referred to as

single condition) would have only 1 dominant land cover

condition, whereas a plot labeled 5 would have a different

observed land cover condition at each measured subplot. To

avoid spectral mixing with unwanted non-forest and water

condition classes, we elected to use only the tree cover data

collected on the single condition, forested plots (n = 202)

falling within the Landsat 46/29 study area. Although this

approach required discarding some potentially useable data,

our ultimate goal was to minimize the impact of sample

heterogeneity on the date-invariant tree cover regression model.

The two airphoto based tree cover data sets, which were used

to validate the date-invariant tree cover regression model, were

collected by two separate photo-interpreters. Both interpreters

estimated percent tree cover over a fixed sample of plots

repeatedly over time using an assortment of high-resolution

aerial photographs (see Table 2 for photo scales and formats).

Because we used a date-invariant approach to model tree cover,

we elected to use photo-interpreted estimates of tree cover

recorded for a given plot, at different points in time, as separate

validation samples. Due to the timing of photointerpretation,

quantification of interpreter to interpreter bias was not possible.

Interpreter 1 photo-interpreted percent tree cover over 125 of

the same 2.1 ha single condition, forested FIA plots that make

up the ground based tree cover data set. Several of these plots

were re-interpreted at a second point in time, yielding 162 tree

cover validation samples (Table 2). Interpreter 2 estimated

percent tree cover over 153, 1 ha sample plots (see Yang et al.,

2005), which including remeasurement yielded 249 tree cover

validation samples (see Table 2). Overall, the two photo-

interpreted tree cover data sets combined to yield a total of 411

tree cover validation samples, spanning 11 years. It is important

to note that interpreter 1’s photo-interpreted estimates of tree

cover were taken solely from plots falling on private forest

lands, whereas interpreter 2’s were only from national forest

lands. Thus, by combining the two data sets we not only

maximized the size and temporal span of our validation sample,

but also accounted for any potential differences in tree cover

based on land ownership.

2.2.3. Explanatory variables

We are interested in spatially predicting patterns of forest

regrowth, thus we compiled 12 geographically referenced
Table 2

Airphoto based percent tree cover validation data set

Year of photo Interpreter Scale Format n

1987–1988 2 1:40,000 BW 81

1989 2 1:12,000 True color 33

1990–1992 2 1:12,000 True color 18

1993–1995 2 1:12,000 True color 26

1997–1998 2 1:12,000 True color 91

1994 1 1:24,000 True color 125

2000 1 1:40,000 BW 37

Total 411

BW stands for Black and White.



Fig. 2. Mask used to extract mean Landsat spectral data over FIA plots. Gray

shading indicates the anchor pixel matched to each plot coordinate.
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explanatory variables (3 physical proxy, 9 plant relevant) for

use in classification and regression tree (CART) statistical

analysis. The physical proxy variables include transformed

aspect (index 0–2) (Beers et al., 1966), slope (%) and elevation

(meters), all derived from a 30 m DEM of the study area. Since

slope, aspect and elevation are merely correlated with the

moisture and temperature gradients plants commonly respond

to, we refer to them as ‘‘physical proxies’’.

On the other hand, recent advances in the spatial

representation of direct resource gradients such as moisture,

temperature and soils allowed us to use several ‘‘plant relevant’’

variables in our analysis. These variables include, potential

relative radiation (PRR) (Pierce et al., 2005), which is a unit less

index at 30 m resolution used to approximate the ‘‘potential’’

incident radiation received by a given surface location during a

set window of time (applied here using a 12 month growing

season). Here the range of PRR is 985 (e.g., deep, north facing

canyon) to 21,959 (e.g., open, slightly southern facing hill

slope). The highest value (21,959) represents the location with

the highest probability of receiving incident radiation in the

absence of clouds. In addition to PRR, we also use PRISM

temperature (parameter-elevation regressions on independent

slopes model, Daly et al., 1994, http://www.prismclimate.org),

July maximum and January minimum (1 km resolution) in (8C),

and five CONUS (Conterminous United States) soil layers

(Miller and White, 1998, http://www.soilinfo.psu.edu/

index.cgi) estimated at a 1 km resolution (sand (%), silt (%),

clay (%), soil depth (cm), and field capacity (kg)).

2.3. Date-invariant regression modeling

In this study we based our forest regrowth trajectories on

estimates of percent tree cover derived from Landsat spectral

reflectance data. This was accomplished by first developing

an initial regression model between the ground measured

percent tree cover data collected by PNW-FIA and the 1995

Landsat spectral reflectance data. To obtain reflectance data

for each of the 202 single-condition, forested FIA plots we

took the mean of a 22 pixel mask (Fig. 2) which was

developed to mimic the size and shape of the FIA ground plot

(for details on FIA ground plots see pages 17–38, USDA

Forest Service, 1995). As FIA plot coordinates are collected

on the southern portion of each plot (i.e., subplot 1), we

matched each plot coordinate to the southern portion of our

22 pixel mask (gray shaded pixel in Fig. 2). Other studies,

which have extracted Landsat spectral reflectance data for use

with FIA data have used similar techniques (Ohmann and

Gregory, 2002).

We then employed a standard correlation procedure where

the extracted means of the spectral variables (Landsat bands 1–

5, and 7), and subsequently derived vegetation indices

[normalized difference vegetation index (NDVI) (Rouse

et al., 1973), normalized difference moisture index (NDMI)

(Hardisky et al., 1983; Jin and Sader, 2005) and tasseled cap

(Crist and Cicone, 1984)] were evaluated via scatter plot to

determine their relationship with tree cover and to explore the

need for transformation. This evaluation revealed the need to
linearize the Landsat bands using a common square root

transformation.

Stepwise multiple regression was then used to identify a

preferred (i.e., high R2, low RMSE) model. Several models

were evaluated, however we determined that a three variable

model containing Landsat bands 1, 3 and 7 best captured the

variation in the ground measured tree cover data (see

discussion). To ensure that the variance observed in our

observations was adequately preserved in our predictions we

preferred the use of reduced major axis regression (RMA)

(Cohen et al., 2003). As in Cohen et al. (2003), we used

canonical correlation analysis (CCA) to derive a linear

combination of the Landsat bands identified above for use in

X on Y RMA regression.

This initial RMA regression model was applied individually

to the remaining 18 ‘‘absolutely normalized’’ Landsat images,

which yielded a total of 19 tree cover images. This date-

invariant regression approach (Healey et al., 2006) assumes that

an effective radiometric calibration procedure has resulted in a

common radiometric scale among all images, resulting in an

date-invariant relationship between spectral reflectance and the

biophysical variable of interest. To test the validity of this

assumption, we conducted a leave-one out cross-validation of

the initial RMA regression model (n = 202), as well as a

temporal accuracy assessment covering 11 different tree cover

images using the two airphoto based tree cover data sets

(Table 2). The date-invariant tree cover estimates falling below

0% and above 100% were rescaled to fall between 0 and 100%

to match the scale of the airphoto data. Mean tree cover was

calculated for each of the 2.1 ha (interpreter 1) and 1 ha plots

(interpreter 2) using each plots coincident tree cover image. The

mean plot tree cover estimates (predicted) were then compared

with the photo-interpreted tree cover estimates (observed) via

linear regression. As we are primarily interested in knowing the

accuracy of the percent tree cover predictions across all images

(i.e., those with validation data), we opted to combine all 411

validation samples into one global validation model.

2.4. Stand disturbance maps

We are interested in using a trajectory-based approach to

analyze patterns of forest regrowth following clearcut harvest-

ing. Consequently, we mapped three sets of clearcut harvests

http://www.prismclimate.org/
http://www.soilinfo.psu.edu/index.cgi
http://www.soilinfo.psu.edu/index.cgi
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which we later use as spatial masks to extract pixel level tree

cover estimates from our 19 tree cover images derived via date-

invariant regression modeling. We decided on analyzing forest

regrowth using three periods of clearcuts for two reasons. First,

regrowth patterns are likely to vary from year-to-year in complex

ways, so by including stands clearcut at different times we hoped

to capture a broader range of regrowth variability in our analysis.

Second, clearcut harvests tend to occur on relatively small (e.g.,

<10 ha), scattered blocks over the landscape, so by developing

regrowth trajectories over clearcuts occurring in different years

we effectively increase the number of stands, as well as the spatial

area available for statistical analysis.

The three sets of clearcuts occurring between 1986–1987,

1987–1988 and 1988–1989 (hereafter referred to as periods 1–

3) were mapped independently using RGB color composite

analyses (Coppin et al., 2004) of Landsat band 5 and a

minimum distance to means supervised classifier (Lillesand

et al. (2004)). As in Cohen et al. (1998), each stand disturbance

map was first smoothed using a 7 � 7 majority filter to rid of

unwanted noise (i.e., single pixels classified as clearcuts). We

then used the ERDAS Imagine clump function to identify and

group contiguous groups of clearcut pixels, and finally used the

ERDAS Imagine sieve function to eliminate all clearcuts less

than 2 ha in size. The three stand disturbance maps were then

hand-edited using several of the high resolution aerial

photographs from Table 2 as reference. Areas classified as

forest change but were determined not to be clearcuts were

removed to ensure a high level of overall quality. Although we

did not explicitly evaluate the accuracy of the stand disturbance

maps, similar methods for mapping clearcut harvests occurring

in Oregon west of the Cascade crest have achieved upwards of

90% accuracy (Cohen et al., 2002).

2.5. Forest regrowth class trajectories

To spatially derive forest regrowth trajectories for the

clearcuts identified from the supervised classification we first

stacked the geographically referenced tree cover images

derived via date-invariant regression modeling into three

multi-temporal image stacks, one for each period of mapped

clearcuts. The first tree cover image in each multi-temporal

stack corresponds to the first growing season after each period’s

mapped harvest disturbances. For period 1, the multi-temporal

stack contained a total of 17 tree cover images, the first tree

cover image corresponding to 1988. For subsequent periods the

multi-temporal tree cover stacks contained 16 and 15 tree cover

images respectively. The stand disturbance maps were then

used to mask (i.e., isolate) the pixel level tree cover values from

each period’s respective tree cover stack.

The extracted time-series of pixel level tree cover estimates

were then grouped into 20 individual ‘‘regrowth’’ classes using

the ISODATA clustering algorithm in ERDAS Imagine. To

facilitate clustering, each period’s multi-temporal tree cover

stack was clustered separately as each had a different number of

tree cover images. Using the statistical measure of transformed

divergence (Jensen, 1996) the spectral separability of the 20

‘‘regrowth’’ classes was evaluated. In general, separability
analysis is used in image classification to determine the extent to

which clustered class-mean values overlap each other in spectral

space. Here separability analysis revealed the need to combine

several of the ‘‘regrowth’’ classes as they were not spectrally

unique. This process resulted in the creation of five statistically

discrete forest regrowth classes per period. The four main classes

were visually assigned labels based on observed rates of percent

tree cover increase, which included little to no regrowth, slow

regrowth, moderate regrowth, and fast regrowth. The fifth class,

labeled mixed regrowth, was interpreted to contain a highly

variable mixture of partially harvested areas, prescribed burns

and shadows. These areas commonly have a dark spectral

appearance, resulting in a false signal of high initial tree cover

immediately following clearcutting. Thus, given its highly

variable nature, as well as its limited spatial extent, we exclude

the mixed regrowth class from the remainder of the analysis.

2.6. Forest regrowth spatial pattern analysis

To corroborate the presence of divergent pathways of forest

regrowth in western Oregon we summarized the pixel level

frequency distribution of the four main forest regrowth classes

identified from ISODATA clustering according to area

disturbed by clearcut harvest and by topographic position.

These distributions were used as a means of describing the

landscape scale, forest regrowth signal for both the CRP and

WCP. To make meaningful comparisons of forest regrowth

between the two ecological provinces we attempted to

normalize the differences in harvest area between the CRP

and WCP by basing our frequency distributions on the ‘‘percent

of clearcut area’’ metric, which we calculated using the

following equation:

% of clearcut area ¼ TAFRC

TACHP
� 100 (1)

where TAFRC is the total area of each forest regrowth class,

TACHP is the total area clearcut per harvest period. With three

periods of clearcuts available for analysis, we were able to use

this metric to characterize the landscape scale forest regrowth

patterns occurring in each ecological province. To gain further

inference into the patterns of forest regrowth associated with

the geographically referenced environmental attributes we also

summarized the patterns of forest regrowth in the CRP and

WCP according to three relevant topographic variables (i.e.,

aspect, slope, elevation). For ease of display, the topographic

variables were binned into class groupings (e.g., aspect 1–338
labeled as N–NE class). For each topographic class grouping,

the distribution of each forest regrowth class was based on

‘‘percent of clearcut area’’ as above, except the mean value

observed over all three periods is reported (error bars are across

period standard deviations).

2.7. Classification and regression tree modeling

To formulate a better understanding of the environmental

attributes influencing forest regrowth following clearcut

harvesting in western Oregon we attempted to predict forest



Table 3

Regression parameters for the initial percent tree cover and airphoto validation

models

Model n Slope Intercept Mean Bias R2 RMSE

Initial RMA 202 1.14 �9.66 70.97 0.03 0.77 14.15

Airphoto validation 411 0.94 3.66 69.38 0.00 0.68 16.09

Fig. 3. Predicted (from cross-validation) vs. observed percent tree cover from

initial RMA regression model (n = 202). Solid line is 1:1.
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regrowth rates for both the CRP and WCP using the

aforementioned explanatory variables and CART statistical

modeling. We select CART as it is flexible, non-parametric, and

robust to complex non-linear relationships (Friedl and Brodley,

1997) and has been previously used to examine changes in

vegetation (Lawrence and Ripple, 2000; Lutz and Halpern,

2006). Since CART modeling is typically data intensive, we

decided to combine the three periods of regrowth classes into

one spatial layer to maximize the available land area from

which to draw our statistical sample. In an attempt to keep

training data equal among regrowth classes (Lawrence and

Wright, 2001) we used a stratified random design (separately

for the CRP and WCP) to select approximately 300 pixels per

regrowth class (4 classes) to be used as training samples. An

additional �300 samples per regrowth class were selected

(separately for the CRP and WCP) for the purpose of testing the

predictive power of the developed CART models. Overall, a

total of 2375 (1186 testing, 1189 training) samples were derived

for the CRP and 2371 (1183 testing, 1188) for the WCP. For

each sample location, the explanatory variables were extracted

on a per pixel basis for use in statistical modeling.

Using the tree modeling tools in S-plus we developed CART

models for both the CRP and WCP. In S-plus, terminal nodes are

created either when the total number of observations at the node

is less than 10 or the deviance at the node is less than 1% of the

total deviance for the entire tree (Venables and Ripley, 1997).

Since CART models tend to over-fit the data, it is crucial that they

be pruned back to some degree to avoid over-fitting, but not to a

point that affects the robustness of the model. To determine an

appropriate size for our tree models we elected to use a cross

validation procedure (Venables and Ripley, 1997; Lawrence and

Wright, 2001) where each set of training samples is divided into

10 equal parts. Trees are fit iteratively for 9 of the 10 trees, with

the tenth being used as validation. After all the trees have been fit,

the minimum average deviance suggests a suitable number of

nodes for the final tree. Although an analyst may opt to use a

smaller size tree than suggested by cross validation, we found the

suggested tree sizes to be acceptable for both the CRP and WCP

models. The final tree models contained 10 (CRP) and 6 (WCP)

terminal nodes and were plotted so that branch size was roughly

proportional to the deviance explained by each node.

To assess the accuracy of both CART models we used the

test samples to compute standard confusion matrices with

overall, producers, and users accuracies, as well as Kappa

(Congalton, 1991), and Tau (Ma and Redmond, 1995) statistics.

In addition, the accuracy of both CART models was evaluated

using an aggregated approach, where the four regrowth classes

were combined to represent ‘‘fast’’ (i.e., combine fast and

moderate regrowth classes) and ‘‘slow’’ (i.e., combine little to

no and slow regrowth classes) forest regrowth conditions.

3. Results

3.1. Initial tree cover model

Model parameters for the initial tree cover regression model

developed using the 202 single condition, forested FIA ground
measured field plots and the linear combination of spectral

variables (bands 1, 3 and 7) from the 1995 Landsat TM image

are found in Table 3. Using a leave one out cross-validation

procedure (Cohen et al., 2003) we found the RMA regression

model to be highly significant both in terms of variance

explained (R2 = 0.77) and predicted error (RMSE = 14.15). The

predicted (from cross-validation) versus observed tree cover is

presented in Fig. 3. The selection of RMA regression ensured

that nearly all the original variation found in our observations

was preserved in our tree cover predictions (variance

ratio = 1.00). The near zero bias (0.03) indicated that overall

there is no over- or under-prediction of tree cover in our initial

model.

3.2. Date-invariant regression

The temporal accuracy of our date-invariant regression

approach was assessed using the two airphoto based tree cover

data sets which contained coincident measurements with 11 of

the 19 tree cover images (Table 2). Using 411 airphoto based

validation samples we incorporated data from all 11 tree cover

images into one global validation model (Table 3 for regression

model parameters). The scatter plot of predicted (from date-

invariant regression) versus observed (airphoto interpreted) tree

cover is presented in Fig. 4. Overall, we found good agreement

between the airphoto interpreted measures of percent tree cover

and those derived via our date-invariant regression modeling

approach. Both the amount of explained variance (R2 = 0.68) as

well as the predicted error (RMSE = 16.09) were found to be

similar to those observed in the initial tree cover model. The

selection of RMA regression ensured that nearly all the

variation found in our validation plots was preserved in our tree



Fig. 4. Predicted (from date-invariant regression) vs. observed percent tree

cover from airphoto interpretation data. Filled circles represent interpreter 1

(n = 162), open circles interpreter 2 (n = 249). Solid line is 1:1.
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cover predictions (variance ratio = 1.00). Furthermore, the near

zero bias observed in the global validation model indicates that

there is no bias in the relationship between date-invariant

regression and airphoto based tree cover.

3.3. Forest regrowth class trajectories

Each period’s mapped clearcuts were spatially clustered into

statistically meaningful forest regrowth classes (i.e., little to no,

slow, moderate, fast) using ISODATA clustering. The mean

values of each period’s forest regrowth classes were fit with

third-order polynomial curves, resulting in three fitted curves

per forest regrowth class (Fig. 5). These curves, or ‘‘mean forest
Fig. 5. Mean forest regrowth trajectories for (a) little to no, (b) slow, (c) moderate, a

dashed lines are the average across period standard deviations.
regrowth trajectories’’ were visually compared for each

regrowth class and were found nearly indistinguishable across

harvest periods. As a result, we determined that each period’s

forest regrowth classes could be used interchangeably in the

CART analysis.

3.4. Forest regrowth patterns

For the CRP and WCP we used ‘‘percent of clearcut area’’ to

summarize forest regrowth at the landscape scale for each

clearcut harvest period (Fig. 6). The consistent patterns of

forest regrowth observed over the three clearcut periods

indicate a much higher percentage of fast regrowth in the CRP

as opposed to a much higher percentage of little to no regrowth

in the WCP.

Frequency distributions of forest regrowth were also derived

for three topographic variables of interest (aspect, slope, and

elevation). Forest regrowth by aspect class is presented in

Fig. 7. For both the CRP and WCP the highest percentage of fast

regrowth occurred on north facing aspects (i.e., N–NE, NE,

NW, and N–NW), with nearly twice as much fast regrowth

being observed on the northern aspects of the CRP then on the

WCP. On the other hand, both ecological provinces saw the

percentage of little to no and slow forest regrowth classes

increase on southern facing aspects (SE, S–SE, S–SW, SW).

Although this general trend was observed for south facing

aspects in both ecological provinces, the WCP was found to

have more than triple the amount of little to no and slow

regrowth on southern aspects than the CRP.

Forest regrowth by percent slope class is presented in Fig. 8.

For both ecological provinces, as slope class increased past 10–
nd (d) fast regrowth classes. Solid lines are fitted third order polynomial curves;



Fig. 6. Landscape scale forest regrowth patterns based on the percentage of

clearcut area (i.e., (area of each forest regrowth class/total area clearcut per

harvest period)�100). Clearcuts were mapped between 1986 and 1987 (period

1), 1987 and 1988 (period 2), and 1988 and 1989 (period 3).

Fig. 8. Patterns of forest regrowth according to slope class. Top panel is CRP,

bottom panel is WCP. Error bars represent across period standard deviations.
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19% the amount of fast regrowth tended to decrease. For the

WCP, this observed decrease in fast regrowth was more

pronounced than for the CRP and was also accompanied by a

noticeable increase in the amount of little to no and slow forest

regrowth. Other than the observed decrease in fast regrowth

with increasing slope, the remaining forest regrowth distribu-

tions in the CRP were found to be relatively stable across slope

classes.

Forest regrowth by elevation class is presented in Fig. 9. For

both ecological provinces, the percentage of fast regrowth

noticeably decreased as elevation increased. This pattern

seemed more pronounced for the WCP as clearcut harvesting

occurred over a much higher elevation range. Although fast

regrowth decreased with elevation in the CRP, at no time did the

percentage of little to no regrowth exceed fast regrowth. On the
Fig. 7. Patterns of forest regrowth according to aspect class. Top panel is CRP,

bottom panel is WCP. Error bars represent across period standard deviations.
other hand, little to no regrowth significantly exceeded fast

regrowth in the WCP at all elevations above 762 m.

3.5. CART models

Using the 12 explanatory variables we constructed CART

classification models to predict the forest regrowth classes of
Fig. 9. Patterns of forest regrowth according to elevation class. Top panel is

CRP, bottom panel is WCP. Error bars represent across period standard

deviations.



Fig. 10. CART classification tree model for the CRP. Elevation is in m,

precipitation in mm and temperature in 8C. See section on explanatory variables

for description of PRR.
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the CRP and WCP ecological provinces. Six of the explanatory

variables (elevation, PRR, percent slope, PRISM average

annual precipitation, CONUS soil silt, and PRISM July average

maximum temperature) were used to construct the final CRP

CART model (Fig. 10), which yielded 10 terminal nodes or

classification decision rules. Branch length of the tree indicated

that elevation explained the largest percentage of variation in

CRP forest regrowth classes, followed by PRR and percent

slope. In the CRP, fast forest regrowth was generally predicted

to occur on low elevation sites (<338 m) and on high elevation

sites (>338 m) with relatively low radiation exposure (PRR

<14,262). Little to no forest regrowth was predicted only on

high elevation (>338 m) sites having both high radiation

exposure (PRR >17,934) and steep topography (slope (%)

>32). A variety of other combinations of the six explanatory

variables resulted in predictions of the moderate and slow forest

regrowth classes.

The overall accuracy of the CRP CART model was 46%

(Table 4). According to Landis and Koch (1977) a k of 27%

suggests ‘‘fair agreement’’ between the predicted regrowth

classes and test samples. The Tau statistic indicates that 27%
Table 4

Classification error matrices for the CRP and WCP CART models

Little to no Slow Moderate Fast Producers (%) Users (%)

CRP

Little to no 150 40 57 34 58 53

Slow 70 50 101 82 37 17

Moderate 30 30 100 138 34 34

Fast 10 15 40 242 49 79

WCP

Little to No 189 57 29 3 49 68

Slow 136 93 60 15 38 31

Moderate 51 66 88 101 35 29

Fast 8 31 71 190 61 63

CRP (%) WCP (%)

Overall 45.58 47.14

k 27.00 29.00

t 27.44 29.51

Bold values indicate correct classification.
more pixels were classified correctly than would be expected by

random assignment. Ranging from 17 to 79%, the individual

class accuracies (Table 4) suggested that the maximum and

minimum regrowth classes (i.e., little to no and fast) were

predicted with greater accuracy than the classes falling in

between (i.e., slow and moderate).

Four of the explanatory variables (elevation, PRR, PRISM

July maximum temperature, and PRISM January minimum

temperature) were used to construct the final WCP CART

model (Fig. 11), which yielded six terminal nodes or

classification decision rules. Branch length of the tree indicated

that elevation and PRR explained the largest percentage of

variation in the WCP forest regrowth classes. In the WCP, fast

forest regrowth was generally predicted to occur on low

elevation (<805 m) sites having moderate to high radiation

exposure (PRR <18,924) and warm winter minimum

temperatures (January minimum temperature >0 8C). Little

to no forest regrowth was predicted to occur on high elevation

sites (>1014 m) and on moderately high elevation sites (>805

and <1014 m) with low summer maximum temperatures (July

maximum temperature <24 8C). A variety of other combina-

tions of the six explanatory variables resulted in predictions of

the moderate and slow forest regrowth classes.

The overall accuracy of the WCP CART model was 47%

(Table 4). A k of 29% suggests ‘‘fair agreement’’ between the

predicted regrowth classes and the test samples (Landis and

Koch, 1977). The Tau statistic indicates that 30% more pixels

were classified correctly than would be expected by random

assignment. Ranging from 29 to 68%, the individual class

accuracies (Table 4) suggested that the maximum and minimum

regrowth classes (i.e., little to no and fast) were predicted with

greater accuracy than the classes falling in between (i.e., slow

and moderate).

Since the maximum and minimum regrowth classes (i.e.,

little to no and fast) showed greater predictive potential, we

reassessed the accuracy of the CART models using an

‘‘aggregated’’ approach. This was accomplished by combing

the fast and moderate regrowth classes to represent ‘‘fast’’

forest regrowth and the little to no and slow regrowth classes to

represent ‘‘slow’’ forest regrowth. Using the aggregated
Fig. 11. CART classification tree model for the WCP. Elevation is in m and

temperature in 8C. See section on explanatory variables for description of PRR.



Table 5

Aggregated classification error matrices for the CRP and WCP CART models

Slow Fast Producers (%) Users (%)

CRP

Slow 310 274 78 53

Fast 85 520 65 86

WCP

Slow 475 107 75 82

Fast 156 450 81 74

CRP (%) WCP (%)

Overall 69.81 77.86

k 39.25 55.78

t 39.60 55.72

Bold values indicate correct classification.
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approach the CRP model yielded an overall accuracy of 70%

(Table 5). Landis and Koch (1977) suggest that a k of 39%

represents ‘‘fair agreement’’ between the predicted regrowth

classes and the test samples. The Tau statistic indicates that

40% more pixels were classified correctly than would be

expected by random assignment. The WCP model improved to

an overall accuracy of 78% (Table 5). A k of 56% is interpreted

by Landis and Koch (1977) as a ‘‘moderate agreement’’

between the predicted regrowth classes and the test samples.

The Tau statistic indicates that 56% more pixels were classified

correctly than would be expected by random assignment. As

expected, both the CRP and WCP overall accuracies improved

with the implementation of the aggregated approach. The Tau

statistics indicate that when the CART decision rules are used to

predict the aggregated ‘‘fast’’ and ‘‘slow’’ forest regrowth

classes the resulting classifications yield 12% (CRP) and 26%

(WCP) more correctly classified pixels than classification of the

four regrowth classes.

4. Discussion

4.1. Date-invariant regression

Using date-invariant regression to create meaningful forest

regrowth trajectories relies heavily on a thorough radiometric

calibration of the multi-temporal image series and the creation

of a significant initial regression model of the biophysical

variable of interest. Although a larger sample of airphoto based

tree cover data was available, we opted to develop our initial

regression model (Table 3, Fig. 3) with the field measured tree

cover data collected by the U.S. Forest Service PNW-FIA

program. This decision was based on the fact that photo-

interpreted percent tree cover often contains significant

interpreter bias, which if extrapolated forward via date-

invariant regression could jeopardize the creation of mean-

ingful forest regrowth trajectories. This bias is readily apparent

in our airphoto validation of the initial tree cover model shown

in Fig. 3, where interpreter 1 (filled circles) had a tendency to

under predict and interpreter 2 (open circles) over predict

percent tree cover, especially in the 20–80% tree cover range.

Had both interpreters shared the same directional bias the
validation of our initial tree cover model might have been less

satisfying. As it stands, our validation model serves as an

illustration of why field measured biophysical variables are

critically important to the accurate modeling of vegetation with

remotely sensed imagery. In addition, use of spectral bands 1

(visible blue, responds to forest type and serves as a measure of

overall ‘‘brightness’’), 3 (visible red, responds to chlorophyll

absorption in vegetation) and 7 (short-wave infrared, responds

to vegetation shadowing and moisture) in our initial tree cover

model demonstrates the utility of multi-wavelength sensors like

Landsat at resolving useful spectral information directly

pertaining to forested systems (Cohen and Goward, 2004).

Given the wide variation of life forms likely present after

clearcutting it is likely that some of the error in our initial tree

cover model resulted from the use of total tree cover. Utilizing

separate hardwood and softwood tree cover categories could

possibly improve both the fit of the initial tree cover regression

model, as well as the detail with which the compositional

changes associated with postharvest forest succession could be

successfully resolved with an image time-series. Other

potential improvements include the use of image transforma-

tion methods such as spectral mixture analysis (Smith et al.,

1990), which separates and quantifies sub-pixel scene

components such as green foliage, tree bark, and shadow to

estimate fractional vegetation cover. Trajectories constructed of

fractional images from SMA may help to more fully resolve the

complex mixtures of species (deciduous versus conifer) and

vegetation cover (low versus high) typically found in early

successional forests of the Pacific Northwest (Sabol et al.,

2002).

Although analysis with multi-temporal image series can be

time consuming, one major advantage to their use is that

variations from atmospheric effects and vegetation phenology,

which can seriously impact change estimates based on year-to-

year image differences are minimized as the overall estimate of

change is based on the fitted trajectory curve (or curve class in

this case). In this sense, year-to-year variations are viewed as

residuals around each classes fitted trajectory. While residuals

resulting from atmospheric effects and vegetation phenology

are viewed as ‘‘error’’ in terms of the trajectory model, the

overall pattern of regrowth is not assumed to be effected unless

the curve fit is unusually low. The lowest R2 of all four of our

forest regrowth class trajectories was .93, indicating minimal

year-to-year impacts from residual error at the class level. At

the pixel level, we found a high level of agreement (R2 = .96,

RMSE = 6.05) between average pixel tree cover estimates

(selected randomly across all images) and tree cover predicted

from the forest regrowth curves (n = 240). The standard

deviations of the average pixel tree cover estimates fell within

the average across period standard deviations of our forest

regrowth trajectories (Fig. 5), indicating that phenology effects

did not prevent the forest regrowth curves from capturing the

response of the original pixel values.

In general, our date-invariant regression approach improves

on similar change detection techniques such as post-classifica-

tion comparison (Coppin et al., 2004), which rely on simple

image differencing of two or more independently produced
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classifications to estimate forest change. Here we derive a more

meaningful characterization of continuous forest change after

clearcut harvest by employing a robust radiometric calibration

procedure specifically designed to reduce the residual scatter in

forest regrowth spectral trajectories (Schroeder et al., 2006) and

by basing our estimates of forest change on continuous

trajectories of percent tree cover. Although here we binned the

continuous tree cover trajectories into forest regrowth change

classes, the trajectory approach also lends itself to more

detailed quantification of forest regrowth information through

parameterization of the fitted mean trajectory curves (Fig. 5)

(Lawrence and Ripple, 1999; Yang et al., 2005).

4.2. Patterns of forest regrowth after clearcut harvesting

It was presumed that forest succession was initiated in our

study by stand-replacing disturbance from clearcut harvesting,

after which vegetation communities are thought to shift from

ephemeral herbaceous life forms to taller perennial shrubs and

finally trees (Franklin et al., 2002). These stages of successional

development which are common to western Oregon have been

previously classified with percent tree cover trajectories from

repeated airphoto interpretation (Yang et al., 2005), where

shrub and herb dominance lasts until roughly 30% tree cover is

achieved, at which time semi-closed conditions persist until

canopy closure (�70% tree cover). Upon inspection, the

endpoints of our forest regrowth class trajectories (Fig. 5)

derived by date-invariant regression seem to coincide well with

these previously defined successional stage classes (e.g., little

to no forest regrowth class corresponds to open and shrub/herb

successional stages; slow forest regrowth class corresponds to

the end of shrub/herb successional stage; moderate forest

regrowth corresponds to semi-closed forest successional stage;

and fast forest regrowth class corresponds to closed canopy

forest successional stage). The similarity with which patterns of

continuous forest succession can be classified with airphoto and

satellite based tree cover trajectories suggests that our date-

invariant regression approach has successfully extended the

forest regrowth trajectory concept to the spectral space of

Landsat.

In terms of forest succession, our forest regrowth classes

derived by date-invariant regression indicated that a wide range

of successional stages could be found in both the CRP and WCP

18 years after clearcut harvesting. The large difference in tree

cover regrowth rates between the little to no (Fig. 5a) and fast

forest regrowth (Fig. 5d) classes substantiates previous findings

that rates of vegetation recovery after disturbance in western

Oregon can be highly variable (Halpern, 1988; Myster and

Pickett, 1994; Nesje, 1996; Lutz and Halpern, 2006). Because

our forest regrowth classes were explicitly defined in Landsat

spectral space, we were able to summarize the landscape

patterns of forest regrowth after clearcut harvesting at the pixel

scale using frequency distributions (Figs. 6–9) based on the

‘‘percent of clearcut area’’ metric (i.e., (area of each forest

regrowth class/total area clearcut per harvest period)�100).

Examination of the forest regrowth class distributions in Fig. 6

indicate that 18 years after clearcut harvest a much higher
proportion of disturbed forest land returned to semi-closed and

closed canopy conditions in the CRP (�70%) than in the WCP

(�50%). Conversely, a much higher proportion of disturbed land

persisted in open or semi-closed condition in the WCP (�34%)

than in the CRP (�10%). Similar distributional patterns of forest

regrowth have been previously observed for the CRP and WCP

(Yang et al., 2005), and are further substantiated here based on the

high degree of distributional consistency observed across three

periods of forest clearcuts (Fig. 6).

As our forest regrowth trajectories were derived in Landsat

spectral space, we could further examine the landscape

distribution of forest regrowth in relation to several topographic

variables thought to influence vegetation growth rates. These

distributions revealed several ecologically interpretable patterns

in forest regrowth after clearcut harvesting, such as a decrease in

fast and increase in slow forest regrowth on southerly aspects

(Fig. 7), on steeper slopes (Fig. 8) and at higher elevations

(Fig. 9). In general, the rate of forest regrowth seemed most

effected by elevation (i.e., as elevation increased rate of forest

regrowth tended to get slower) and least affected by steepness of

slope (i.e., forest regrowth classes were distributed somewhat

evenly across slope classes). It is possible that spectral variation

associated with sun-angle effects could be contributing to the

detection of slower regrowth on southern aspects (e.g., more sun

on southern exposures will brighten the spectral signal, resulting

in the prediction of less tree cover). Using only the FIA plot data

(n = 54) we found no statistical difference at the 95% confidence

level (ANOVA, F = 1.15, p = 0.30) between mean tree cover of

young stands (<20 years of age) located on northern and

southern aspects. Given the small sample size, we draw the

conclusion that more work is needed to fully understand the

effect of sun-angle on the characterization of forest regrowth

rates with optical satellite imagery.

Overall, both the forest regrowth class trajectories (Fig. 5)

and the frequency distributions of the forest regrowth classes

(Figs. 6–9) indicated that forest regrowth rates after clearcut

harvesting in western Oregon varied both within and across

ecological provinces. At the landscape scale we attributed some

of the across province variability in forest regrowth rates to

climatic and vegetative differences between the CRP and WCP.

With a longer and more favorable growing season (i.e., more

annual rainfall and deep, rich soils) the CRP was found to have

a larger proportion of fast forest regrowth than observed in the

WCP, which is much drier and warmer during the summer

growing season (Franklin and Dyrness, 1988). We also

observed elevation as a potential limiting factor to forest

regrowth (Fig. 9), which could explain in part the propensity for

little to no and slow forest regrowth in the more mountainous

WCP. Within-province differences in forest regrowth after

clearcut harvest are likely the result of local site conditions, as

well as forest management practices.

4.3. Predicting rates of postharvest forest regrowth with

CART

The extension of forest regrowth trajectories to the spectral

space of Landsat provided the opportunity to more fully
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investigate the climatic and topographic attributes influencing

the rate of forest regrowth following clearcut harvesting in

western Oregon. Although the overall accuracies of the CART

models were not high in terms of correctly classified test

samples (Tables 4 and 5), the resulting classification decision

rules provided interesting insights into the geographically

referenced environmental attributes influencing forest succes-

sion in both ecological provinces. The CRP CART model

(Fig. 10) had more decision pathways or terminal nodes (10)

than the WCP CART model (6) (Fig. 11), indicating that more

favorable growing conditions common to the CRP could

possibly result in more complex interactions among plant

relevant and physical proxy variables influencing postharvest

forest regrowth. Another possibility is that more subtle

environmental gradients influencing forest regrowth may not

be detectable with simple dichotomous models like CART. As

both physical proxy (aspect, slope and elevation) and plant

relevant (precipitation, temperature, soil silt, radiation)

explanatory variables were input into the CART models, the

relative importance of each type of predictor could be implied

based on model inclusion, whereas the relative importance of

each selected predictor could be assessed according to the

amount of variance explained (i.e., branch length in Figs. 10

and 11).

The importance of plant relevant predictor variables is

apparent as five of the seven predictor variables selected for use

in both CART models are known to directly influence forest

growth (PRR radiation, PRISM average annual precipitation,

PRISM July maximum temperature, PRISM January minimum

temperature, and CONUS soil silt). Of the explanatory

variables selected, three (elevation, PRR, PRISM July

maximum temperature) were used in both the CRP and

WCP models. Elevation was found to explain the largest

percentage of variation in both forest regrowth models.

Although elevation is not known to directly influence forest

regrowth, it has been shown to influence air and soil

temperatures, length of growing season, amount of damage

from wind and snow, and amount of moisture from orographic

precipitation (Nesje, 1996). PRR explained the next largest

amount of variation in both CART models, indicating that

radiation variables such as PRR which integrate annual changes

in solar orientation and shading effects from local topography

are likely more effective at capturing landscape radiation

patterns than commonly used physical proxies (i.e., slope and

aspect) (Lookingbill and Urban, 2005; Pierce et al., 2005).

Interestingly the interaction between elevation and radiation

has been previously found to be a limiting factor to postharvest

forest successional rates in western Oregon (Cleary et al.,

1978). Summer temperature was also used by both CART

models, indicating that even at relatively coarse spatial

resolutions (1 km) useful climatic patterns can still be resolved.

Since both CART models yielded only ‘‘fair agreement’’ (as

measured by Kappa; Landis and Koch, 1977) between the

predicted forest regrowth classes and the test samples we

combined the four forest regrowth classes into two general

‘‘fast’’ and ‘‘slow’’ categories to gauge the statistical

effectiveness of predicting more generalized postharvest forest
regrowth rates. Based on the Tau statistic, the CART models

correctly classified a higher percentage of test samples than

classification of the four forest regrowth classes, suggesting that

more general regrowth classes may be more predictable at the

landscape scale.

5. Conclusion

The rate at which forest vegetation re-establishes dominance

after clearcut harvesting can impact many ecological processes.

Although knowing a forest stand’s current state of succession is

useful, a more robust characterization can be achieved with the

use of continuous trajectories developed with time-series data.

A useful methodology was presented which uses a Landsat

image time-series to more fully understand the spatial extent, as

well as the environmental attributes influencing postharvest

forest regrowth rates in western Oregon forests.

Our methodology required that the Landsat image time-

series be transformed to a more meaningful biophysical

measure (i.e., percent tree cover). This was accomplished

through date-invariant regression, which is the extrapolation of

an initial regression model developed between a single Landsat

image and ground measured data to a series of cross-

normalized images. Here we extrapolated an initial percent

tree cover model to 19 images, which had been previously

calibrated to a common radiometric scale using the ‘‘absolute-

normalization’’ approach of Schroeder et al. (2006). The

accuracy of the resulting tree cover estimates were successfully

evaluated across time using two sets of photointerpreted tree

cover data. Three periods of clearcut harvests were mapped and

used to extract tree cover estimates, which were subsequently

classified into four main rate classes (little to no, slow, moderate

and fast). These forest regrowth rate classes were then used to

develop frequency distributions describing the landscape

patterns of forest regrowth in western Oregon.

The patterns of forest regrowth observed over the three

clearcut periods indicated a much higher percentage of fast

regrowth in the CRP and a much higher percentage of little to no

regrowth in the WCP. For both ecological provinces we observed

the propensity for faster regrowth on north facing aspects,

shallow slopes and at low elevations. Overall, the forest regrowth

classes and the frequency distributions indicated that a wide

range of successional stages could be found in both the CRP and

WCP 18 years after clearcut harvesting. This wide range in

successional stage classes corroborates previous findings that

rates of forest regrowth after disturbance in western Oregon can

be highly variable (Halpern, 1988; Myster and Pickett, 1994;

Nesje, 1996; Lutz and Halpern, 2006). The development of forest

regrowth trajectories using spectral data from Landsat provided

an opportunity to use CART statistical analysis to more fully

investigate the climatic and topographic attributes influencing

postharvest forest regrowth rates in western Oregon.

Both CART models provided ecologically interpretable

insights into the environmental attributes influencing forest

regrowth rates in both ecological provinces. Elevation followed

by relative radiation expressed by PRR explained the largest

amount of variation in forest regrowth, substantiating previous
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findings that elevation and radiation interact to influence local

site factors limiting postharvest successional rates (Cleary

et al., 1978). We observed only ‘‘fair agreement’’ (as measured

by Kappa; Landis and Koch, 1977) between predicted forest

regrowth classes and the test samples, however when combined

into two general ‘‘fast’’ and ‘‘slow’’ categories the CART

models correctly classified 12% (CRP) and 26% (WCP) percent

more test samples than classification of the four regrowth

classes. Overall, the CART models yielded ecologically

interpretable results regarding the environmental attributes

(both physical proxy and plant relevant) influencing landscape

scale early forest successional patterns in western Oregon.
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